The packing chromatic number of infinite product graphs
نویسندگان
چکیده
منابع مشابه
The packing chromatic number of infinite product graphs
The packing chromatic number χρ(G) of a graph G is the smallest integer k such that the vertex set V (G) can be partitioned into disjoint classes X1, . . . , Xk, where vertices in Xi have pairwise distance greater than i. For the Cartesian product of a path and the 2-dimensional square lattice it is proved that χρ(Pm Z) = ∞ for any m ≥ 2, thus extending the result χρ(Z) = ∞ of Finbow and Rall [...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملPacking Chromatic Number of Distance Graphs
The packing chromatic number (G) of a graph G is the smallest integer k such that vertices of G can be partitioned into disjoint classes X1; :::; Xk where vertices in Xi have pairwise distance greater than i. We study the packing chromatic number of in nite distance graphs G(Z; D), i.e. graphs with the set Z of integers as vertex set and in which two distinct vertices i; j 2 Z are adjacent if a...
متن کاملOn Chromatic Number of Infinite Graphs
In our paper [1.] using a special set-theoretical construction assuming the generalized continuum hypothesis (G.C.H . in what follows) we proved that the topological product of J~k discrete topological spaces of power J~ o is not k-compact for every k < co . Since then several related or equivalent problems were independently discussed in the literature . General results of A . TARSKI, P. HANF ...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2009
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2008.09.014